The Power of Generating Functions

Chuanlong Benjamin Du

May 15, 2010

Generating functions is a very powerful way to find closed formula for sequences defined iteratively.
I was so bored during the final week, so I went on internet for fun. Finally I found someone from Sydney University was asking for help on this question:
(a) If $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$ and $L_{0}=2, L_{1}=1$, please Find a closed formula for L_{n}.
(b) $S_{n}=L_{n}+L_{n-1}+\ldots+L_{0}$, please find an closed formula for S_{n}.
(c) $A_{n}=L_{n-1} S_{0}+L_{n-2} S_{1}+\ldots+L_{0} S_{n-1}$, please find a closed formula for A_{n}.

It's pretty easy to use generating functions to solve this problem.
(a) Define $L(x)=\sum_{n=0}^{\infty} L_{n} x^{n}$. From $L_{n}=L_{n-1}+L_{n-2}, n \geq 2$ we have

$$
L_{n} x^{n}=L_{n-1} x^{n}+L_{n-2} x^{n}, n \geq 2
$$

Sum both side we have

$$
\sum_{n \geq 2} L_{n} x^{n}=x \sum_{n \geq 2} L_{n-1} x^{n-1}+x^{2} \sum_{n \geq 2} L_{n-2} x^{n-2}
$$

i.e.

$$
L(x)-L_{1} x-L_{0}=x\left(L(x)-L_{0}\right)+x^{2} L(x)
$$

So we have

$$
L(x)=\frac{\left(L_{0}-L_{1}\right) x-L_{0}}{x^{2}+x-1}=\frac{x-2}{x^{2}+x-1}=\frac{-\omega_{1}}{x-\omega_{1}}+\frac{-\omega_{2}}{x-\omega_{2}}=\frac{1}{1-\frac{x}{\omega_{1}}}+\frac{1}{1-\frac{x}{\omega_{2}}}
$$

where $\omega_{1}=\frac{-1-\sqrt{5}}{2}$ and $\omega_{2}=\frac{-1+\sqrt{5}}{2}$. Using Taylor expansion we have

$$
L(x)=\sum_{n \geq 0}\left(\frac{x}{\omega_{1}}\right)^{n}+\sum_{n \geq 0}\left(\frac{x}{\omega_{2}}\right)^{n}=\sum_{n \geq 0}\left(\left(\frac{1}{\omega_{1}}\right)^{n}+\left(\frac{1}{\omega_{2}}\right)^{n}\right) x^{n}
$$

So we know that

$$
L_{n}=\left(\frac{1}{\omega_{1}}\right)^{n}+\left(\frac{1}{\omega_{2}}\right)^{n}=\left(\frac{-\sqrt{5}+1}{2}\right)^{n}+\left(\frac{\sqrt{5}+1}{2}\right)^{n}, n \geq 0 .
$$

(b) Define $S(x)=\sum_{n \geq 0} S_{n} x^{n}$. From $S_{n}=L_{n}+\ldots+L_{0}, n \geq 0$ we have

$$
S_{n} x^{n}=\sum_{i=0}^{n} L_{i} x^{n}, n \geq 0
$$

Sum both sides we have

$$
\sum_{n \geq 0} S_{n} x^{n}=\sum_{n \geq 0} \sum_{i=0}^{n} L_{i} x^{n}=\sum_{i \geq 0} \sum_{n=i}^{\infty} L_{i} x^{n}=\sum_{i \geq 0} L_{i} \frac{x^{i}}{1-x}=\frac{1}{1-x} \sum_{i \geq 0} L_{i} x^{i}=\frac{L(x)}{1-x}
$$

i.e.

$$
S(x)=\frac{L(x)}{1-x}
$$

Then similar to what we have done in part (a), we can write $S(x)$ as $S(x)=\frac{A}{x-\omega_{1}}+\frac{B}{x-\omega_{2}}+\frac{C}{x-\omega_{3}}$, where $\omega_{3}=1$. And then using Taylor expansion we easily get the closed formula for S_{n}.
(c) Similar to part (b) though a little more complex. Try it if you're interested!

